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Preface

Many professional programmers are not well prepared to tackle algorithm design
problems. This is a pity, because the techniques of algorithm design form one
of the core practical technologies of computer science.

This book is intended as a manual on algorithm design, providing access to
combinatorial algorithm technology for both students and computer profession-
als. It is divided into two parts: Techniques and Resources. The former is a
general introduction to the design and analysis of computer algorithms. The Re-
sources section is intended for browsing and reference, and comprises the catalog
of algorithmic resources, implementations, and an extensive bibliography.

To the Reader

I have been gratified by the warm reception previous editions of The Algorithm
Design Manual have received, with over 60,000 copies sold in various formats
since first being published by Springer-Verlag in 1997. Translations have ap-
peared in Chinese, Japanese, and Russian. It has been recognized as a unique
guide to using algorithmic techniques to solve problems that often arise in prac-
tice.

Much has changed in the world since the second edition of The Algorithm
Design Manual was published in 2008. The popularity of my book soared as
software companies increasingly emphasized algorithmic questions during em-
ployment interviews, and many successful job candidates have trusted The Al-
gorithm Design Manual to help them prepare for their interviews.

Although algorithm design is perhaps the most classical area of computer
science, it continues to advance and change. Randomized algorithms and data
structures have become increasingly important, particularly techniques based
on hashing. Recent breakthroughs have reduced the algorithmic complexity of
the best algorithms known for such fundamental problems as finding minimum
spanning trees, graph isomorphism, and network flows. Indeed, if we date the
origins of modern algorithm design and analysis to about 1970, then roughly
20% of modern algorithmic history has happened since the second edition of
The Algorithm Design Manual.

The time has come for a new edition of my book, incorporating changes
in the algorithmic and industrial world plus the feedback I have received from
hundreds of readers. My major goals for the third edition are:
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e To introduce or expand coverage of important topics like hashing, ran-

domized algorithms, divide and conquer, approximation algorithms, and
quantum computing in the first part of the book (Practical Algorithm
Design).

e To update the reference material for all the catalog problems in the second

part of the book (The Hitchhiker’s Guide to Algorithms).

e To take advantage of advances in color printing to produce more informa-

tive and eye-catching illustrations.

Three aspects of The Algorithm Design Manual have been particularly beloved:

(1) the hitchhiker’s guide to algorithms, (2) the war stories, and (3) the elec-
tronic component of the book. These features have been preserved and strength-
ened in this third edition:

o The Hitchhiker’s Guide to Algorithms — Since finding out what is known

about an algorithmic problem can be a difficult task, I provide a catalog of
the seventy-five most important algorithmic problems arising in practice.
By browsing through this catalog, the student or practitioner can quickly
identify what their problem is called, what is known about it, and how
they should proceed to solve it.

I have updated every section in response to the latest research results and
applications. Particular attention has been paid to updating discussion
of available software implementations for each problem, reflecting sources
such as GitHub, which have emerged since the previous edition.

War stories — To provide a better perspective on how algorithm problems
arise in the real world, I include a collection of “war stories”, tales from my
experience on real problems. The moral of these stories is that algorithm
design and analysis is not just theory, but an important tool to be pulled
out and used as needed.

The new edition of the book updates the best of the old war stories,
plus adds new tales on randomized algorithms, divide and conquer, and
dynamic programming.

Online component — Full lecture notes and a problem solution Wiki is
available on my website www.algorist.com. My algorithm lecture videos
have been watched over 900,000 times on YouTube. This website has been
updated in parallel with the book.

Equally important is what is not done in this book. I do not stress the

mathematical analysis of algorithms, leaving most of the analysis as informal
arguments. You will not find a single theorem anywhere in this book. When
more details are needed, the reader should study the cited programs or refer-
ences. The goal of this manual is to get you going in the right direction as
quickly as possible.
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To the Instructor

This book covers enough material for a standard Introduction to Algorithms
course. It is assumed that the reader has completed the equivalent of a second
programming course, typically titled Data Structures or Computer Science II.

A full set of lecture slides for teaching this course are available online at
www.algorist.com. Further, I make available online video lectures using these
slides to teach a full-semester algorithm course. Let me help teach your course,
through the magic of the Internet!

I have made several pedagogical improvements throughout the book, includ-
ing:

e New material — To reflect recent developments in algorithm design, I have
added new chapters on randomized algorithms, divide and conquer, and
approximation algorithms. I also delve deeper into topics such as hashing.
But I have been careful to heed the readers who begged me to keep the
book of modest length. I have (painfully) removed less important material
to keep total expansion by page count under 10% over the previous edition.

o C(learer exposition — Reading through my text ten years later, I was thrilled
to find many sections where my writing seemed ethereal, but other places
that were a muddled mess. Every page in this manuscript has been edited
or rewritten for greater clarity, correctness and flow.

e More interview resources — The Algorithm Design Manual remains very
popular for interview prep, but this is a fast-paced world. I include more
and fresher interview problems, plus coding challenges associated with
interview sites like LeetCode and Hackerrank. I also include a new section
with advice on how to best prepare for interviews.

e Stop and think — Each of my course lectures begins with a “Problem of
the Day,” where I illustrate my thought process as I solve a topic-specific
homework problem — false starts and all. This edition had more Stop and
Think sections, which perform a similar mission for the reader.

e More and better homework problems — The third edition of The Algorithm
Design Manual has more and better homework exercises than the previous
one. I have added over a hundred exciting new problems, pruned some
less interesting problems, and clarified exercises that proved confusing or
ambiguous.

e Updated code style — The second edition featured algorithm implementa-
tions in C, replacing or augmenting pseudocode descriptions. These have
generally been well received, although certain aspects of my programming
have been condemned by some as old fashioned. All programs have been
revised and updated, and are structurally highlighted in color.

e (Color images — My companion book The Data Science Design Manual
was printed with color images, and I was excited by how much this made
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concepts clearer. Every single image in the The Algorithm Design Manual
is now rendered in living color, and the process of review has improved
the contents of most figures in the text.
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