Texts in Computer Science

Series Editors
David Gries, Department of Computer Science, Cornell University, Ithaca, NY, USA

Orit Hazzan@®, Faculty of Education in Technology and Science, Technion—Israel Institute of
Technology, Haifa, Israel

Titles in this series now included in the Thomson Reuters Book Citation Index!

‘Texts in Computer Science’ (TCS) delivers high-quality instructional content for
undergraduates and graduates in all areas of computing and information science, with a
strong emphasis on core foundational and theoretical material but inclusive of some
prominent applications-related content. TCS books should be reasonably self-contained
and aim to provide students with modern and clear accounts of topics ranging across the
computing curriculum. As a result, the books are ideal for semester courses or for
individual self-study in cases where people need to expand their knowledge. All texts are
authored by established experts in their fields, reviewed internally and by the series editors,
and provide numerous examples, problems, and other pedagogical tools; many contain
fully worked solutions.

The TCS series is comprised of high-quality, self-contained books that have broad and
comprehensive coverage and are generally in hardback format and sometimes contain
color. For undergraduate textbooks that are likely to be more brief and modular in their
approach, require only black and white, and are under 275 pages, Springer offers the
flexibly designed Undergraduate Topics in Computer Science series, to which we refer
potential authors.

More information about this series at http://www.springer.com/series/3191

Steven S. Skiena

The Algorithm Design Manual

Third Edition

@ Springer

Steven S. Skiena

Department of Computer Science
Stony Brook University

Stony Brook, NY, USA

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-3-030-54255-9 ISBN 978-3-030-54256-6 (eBook)

https://doi.org/10.1007/978-3-030-54256-6

1* edition: © Springer-Verlag New York 1998

2" edition: © Springer-Verlag London Limited 2008, Corrected printing 2012

3 edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2020

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Many professional programmers are not well prepared to tackle algorithm design
problems. This is a pity, because the techniques of algorithm design form one
of the core practical technologies of computer science.

This book is intended as a manual on algorithm design, providing access to
combinatorial algorithm technology for both students and computer profession-
als. It is divided into two parts: Techniques and Resources. The former is a
general introduction to the design and analysis of computer algorithms. The Re-
sources section is intended for browsing and reference, and comprises the catalog
of algorithmic resources, implementations, and an extensive bibliography.

To the Reader

I have been gratified by the warm reception previous editions of The Algorithm
Design Manual have received, with over 60,000 copies sold in various formats
since first being published by Springer-Verlag in 1997. Translations have ap-
peared in Chinese, Japanese, and Russian. It has been recognized as a unique
guide to using algorithmic techniques to solve problems that often arise in prac-
tice.

Much has changed in the world since the second edition of The Algorithm
Design Manual was published in 2008. The popularity of my book soared as
software companies increasingly emphasized algorithmic questions during em-
ployment interviews, and many successful job candidates have trusted The Al-
gorithm Design Manual to help them prepare for their interviews.

Although algorithm design is perhaps the most classical area of computer
science, it continues to advance and change. Randomized algorithms and data
structures have become increasingly important, particularly techniques based
on hashing. Recent breakthroughs have reduced the algorithmic complexity of
the best algorithms known for such fundamental problems as finding minimum
spanning trees, graph isomorphism, and network flows. Indeed, if we date the
origins of modern algorithm design and analysis to about 1970, then roughly
20% of modern algorithmic history has happened since the second edition of
The Algorithm Design Manual.

The time has come for a new edition of my book, incorporating changes
in the algorithmic and industrial world plus the feedback I have received from
hundreds of readers. My major goals for the third edition are:

vi

PREFACE

e To introduce or expand coverage of important topics like hashing, ran-

domized algorithms, divide and conquer, approximation algorithms, and
quantum computing in the first part of the book (Practical Algorithm
Design).

e To update the reference material for all the catalog problems in the second

part of the book (The Hitchhiker’s Guide to Algorithms).

e To take advantage of advances in color printing to produce more informa-

tive and eye-catching illustrations.

Three aspects of The Algorithm Design Manual have been particularly beloved:

(1) the hitchhiker’s guide to algorithms, (2) the war stories, and (3) the elec-
tronic component of the book. These features have been preserved and strength-
ened in this third edition:

o The Hitchhiker’s Guide to Algorithms — Since finding out what is known

about an algorithmic problem can be a difficult task, I provide a catalog of
the seventy-five most important algorithmic problems arising in practice.
By browsing through this catalog, the student or practitioner can quickly
identify what their problem is called, what is known about it, and how
they should proceed to solve it.

I have updated every section in response to the latest research results and
applications. Particular attention has been paid to updating discussion
of available software implementations for each problem, reflecting sources
such as GitHub, which have emerged since the previous edition.

War stories — To provide a better perspective on how algorithm problems
arise in the real world, I include a collection of “war stories”, tales from my
experience on real problems. The moral of these stories is that algorithm
design and analysis is not just theory, but an important tool to be pulled
out and used as needed.

The new edition of the book updates the best of the old war stories,
plus adds new tales on randomized algorithms, divide and conquer, and
dynamic programming.

Online component — Full lecture notes and a problem solution Wiki is
available on my website www.algorist.com. My algorithm lecture videos
have been watched over 900,000 times on YouTube. This website has been
updated in parallel with the book.

Equally important is what is not done in this book. I do not stress the

mathematical analysis of algorithms, leaving most of the analysis as informal
arguments. You will not find a single theorem anywhere in this book. When
more details are needed, the reader should study the cited programs or refer-
ences. The goal of this manual is to get you going in the right direction as
quickly as possible.

www.algorist.com

PREFACE vii

To the Instructor

This book covers enough material for a standard Introduction to Algorithms
course. It is assumed that the reader has completed the equivalent of a second
programming course, typically titled Data Structures or Computer Science II.

A full set of lecture slides for teaching this course are available online at
www.algorist.com. Further, I make available online video lectures using these
slides to teach a full-semester algorithm course. Let me help teach your course,
through the magic of the Internet!

I have made several pedagogical improvements throughout the book, includ-
ing:

e New material — To reflect recent developments in algorithm design, I have
added new chapters on randomized algorithms, divide and conquer, and
approximation algorithms. I also delve deeper into topics such as hashing.
But I have been careful to heed the readers who begged me to keep the
book of modest length. I have (painfully) removed less important material
to keep total expansion by page count under 10% over the previous edition.

o C(learer exposition — Reading through my text ten years later, I was thrilled
to find many sections where my writing seemed ethereal, but other places
that were a muddled mess. Every page in this manuscript has been edited
or rewritten for greater clarity, correctness and flow.

e More interview resources — The Algorithm Design Manual remains very
popular for interview prep, but this is a fast-paced world. I include more
and fresher interview problems, plus coding challenges associated with
interview sites like LeetCode and Hackerrank. I also include a new section
with advice on how to best prepare for interviews.

e Stop and think — Each of my course lectures begins with a “Problem of
the Day,” where I illustrate my thought process as I solve a topic-specific
homework problem — false starts and all. This edition had more Stop and
Think sections, which perform a similar mission for the reader.

e More and better homework problems — The third edition of The Algorithm
Design Manual has more and better homework exercises than the previous
one. I have added over a hundred exciting new problems, pruned some
less interesting problems, and clarified exercises that proved confusing or
ambiguous.

e Updated code style — The second edition featured algorithm implementa-
tions in C, replacing or augmenting pseudocode descriptions. These have
generally been well received, although certain aspects of my programming
have been condemned by some as old fashioned. All programs have been
revised and updated, and are structurally highlighted in color.

e (Color images — My companion book The Data Science Design Manual
was printed with color images, and I was excited by how much this made

http://www.algorist.com

viii PREFACE

concepts clearer. Every single image in the The Algorithm Design Manual
is now rendered in living color, and the process of review has improved
the contents of most figures in the text.

Acknowledgments

Updating a book dedication every ten years focuses attention on the effects
of time. Over the lifespan of this book, Renee became my wife and then the
mother of our two children, Bonnie and Abby, who are now no longer children.
My father has left this world, but Mom and my brothers Len and Rob remain
a vital presence in my life. I dedicate this book to my family, new and old, here
and departed.

I would like to thank several people for their concrete contributions to this
new edition. Michael Alvin, Omar Amin, Emily Barker, and Jack Zheng were
critical to building the website infrastructure and dealing with a variety of
manuscript preparation issues. Their roles were played by Ricky Bradley, An-
drew Gaun, Zhong Li, Betson Thomas, and Dario Vlah on previous editions.
The world’s most careful reader, Robert Piché of Tampere University, and Stony
Brook students Peter Duffy, Olesia Elfimova, and Robert Matsibekker read early
versions of this edition, and saved both you and me the trouble of dealing with
many errata. Thanks also to my Springer-Verlag editors, Wayne Wheeler and
Simon Rees.

Several exercises were originated by colleagues or inspired by other texts.
Reconstructing the original sources years later can be challenging, but credits
for each problem (to the best of my recollection) appear on the website.

Much of what I know about algorithms I learned along with my graduate stu-
dents. Several of them (Yaw-Ling Lin, Sundaram Gopalakrishnan, Ting Chen,
Francine Evans, Harald Rau, Ricky Bradley, and Dimitris Margaritis) are the
real heroes of the war stories related within. My Stony Brook friends and algo-
rithm colleagues Estie Arkin, Michael Bender, Jing Chen, Rezaul Chowdhury,
Jie Gao, Joe Mitchell, and Rob Patro have always been a pleasure to work with.

Caveat

It is traditional for the author to magnanimously accept the blame for whatever
deficiencies remain. I don’t. Any errors, deficiencies, or problems in this book
are somebody else’s fault, but I would appreciate knowing about them so as to
determine who is to blame.

Steven S. Skiena

Department of Computer Science

Stony Brook University

Stony Brook, NY 11794-2424
http://www.cs.stonybrook.edu/~skiena
August 2020

http://www.cs.stonybrook.edu/~skiena

Contents

I

1

Practical Algorithm Design

Introduction to Algorithm Design
1.1 Robot Tour Optimization
1.2 Selecting the Right Jobs
1.3 Reasoning about Correctness
1.3.1 Problems and Properties
1.3.2 Expressing Algorithms
1.3.3 Demonstrating Incorrectness
1.4 Induction and Recursion
1.5 Modeling the Problem
1.5.1 Combinatorial Objects
1.5.2 Recursive Objects
1.6 Proof by Contradiction
1.7 About the War Stories L.
1.8 War Story: Psychic Modeling
1.9 Estimation
1.10 Exerciseso e

Algorithm Analysis
2.1 The RAM Model of Computation
2.1.1 Best-Case, Worst-Case, and Average-Case Complexity . .
2.2 The Big Oh Notation.
2.3 Growth Rates and Dominance Relations
2.3.1 Dominance Relations,
2.4 Working with the BigOh
2.4.1 Adding Functions oo
2.4.2 Multiplying Functions
2.5 Reasoning about Efficiency
2.5.1 Selection Sort
2.5.2 Imsertion Sort
2.5.3 String Pattern Matching
2.5.4 Matrix Multiplication,
2.6 Summations
2.7 Logarithms and Their Applications

CONTENTS

2.7.1 Logarithms and Binary Search 49
2.7.2 Logarithms and Trees 49
2.7.3 Logarithmsand Bits 50
2.7.4 Logarithms and Multiplication 50
2.7.5 Fast Exponentiation 50
2.7.6 Logarithms and Summations 51
2.7.7 Logarithms and Criminal Justice 51
2.8 Properties of Logarithms 52
2.9 War Story: Mystery of the Pyramids 54
2.10 Advanced Analysis (*) o oL 57
2.10.1 Esoteric Functions 57
2.10.2 Limits and Dominance Relations 58
2.11 Exerciseso 59
Data Structures 69
3.1 Contiguous vs. Linked Data Structures. 69
311 AITAyS . .o 70
3.1.2 Pointers and Linked Structures 71
3.1.3 Comparison 74
3.2 Containers: Stacks and Queues 75
3.3 Dictionaries Lo L e 76
3.4 Binary Search Trees 81
3.4.1 Implementing Binary Search Trees 81
3.4.2 How Good are Binary Search Trees? 85
3.4.3 Balanced Search Trees 86
3.5 Priority Queues 87
3.6 War Story: Stripping Triangulations 89
3.7 Hashing 93
3.7.1 Collision Resolution 93
3.7.2 Duplicate Detection via Hashing 95
3.7.3 Other Hashing Tricks 96
3.7.4 Canonicalization 96
3.75 Compaction 97
3.8 Specialized Data Structures 98
3.9 War Story: String’em Up 98
3.10 Exercises 103
Sorting 109
4.1 Applications of Sorting L. 109
4.2 Pragmatics of Sorting oL 113
4.3 Heapsort: Fast Sorting via Data Structures 115
4.3.1 Heaps e 116
4.3.2 Constructing Heaps 118
4.3.3 Extracting the Minimum 120
4.3.4 Faster Heap Construction (*) 122

4.3.5 Sorting by Incremental Insertion 124

CONTENTS

4.4 War Story: Give me a Ticket on an Airplane
4.5 Mergesort: Sorting by Divide and Conquer
4.6 Quicksort: Sorting by Randomization
4.6.1 Intuition: The Expected Case for Quicksort
4.6.2 Randomized Algorithms
4.6.3 Is Quicksort Really Quick?
4.7 Distribution Sort: Sorting via Bucketing
4.7.1 Lower Bounds for Sorting
4.8 War Story: Skiena for the Defense
4.9 EXercises e

Divide and Conquer
5.1 Binary Search and Related Algorithms
5.1.1 Counting Occurrences
5.1.2 One-Sided Binary Search
5.1.3 Square and Other Roots
5.2 War Story: Finding the Bug in the Bug
5.3 Recurrence Relations L.
5.3.1 Divide-and-Conquer Recurrences
5.4 Solving Divide-and-Conquer Recurrences
5.5 Fast Multiplication o oL
5.6 Largest Subrange and Closest Pair
5.7 Parallel Algorithms
5.7.1 Data Parallelism
5.7.2 Pitfalls of Parallelism
5.8 War Story: Going Nowhere Fast
5.9 Convolution (*) L
5.9.1 Applications of Convolution
5.9.2 Fast Polynomial Multiplication (**)
5.10 Exercises e

Hashing and Randomized Algorithms
6.1 Probability Review oL
6.1.1 Probability o
6.1.2 Compound Events and Independence
6.1.3 Conditional Probability
6.1.4 Probability Distributions
6.1.5 Mean and Varianceo
6.1.6 Tossing Coins
6.2 Understanding Balls and Bins
6.2.1 The Coupon Collector’s Problem
6.3 Why is Hashing a Randomized Algorithm?
6.4 Bloom Filters
6.5 The Birthday Paradox and Perfect Hashing
6.6 Minwise Hashing
6.7 Efficient String Matching

xi

xii CONTENTS

6.8 Primality Testing o 190
6.9 War Story: Giving Knuth the Middle Initial 191
6.10 Where do Random Numbers Come From? 192
6.11 Exercises 193
7 Graph Traversal 197
7.1 Flavors of Graphs. 198
7.1.1 The Friendship Graph 201

7.2 Data Structures for Graphs 0. 203
7.3 War Story: I was a Victim of Moore’s Law 207
7.4 War Story: Getting the Graph 210
7.5 Traversing a Graph 212
7.6 Breadth-First Search 213
7.6.1 Exploiting Traversal 216
7.6.2 Finding Paths. L. 217

7.7 Applications of Breadth-First Search 217
7.7.1 Connected Components 218
7.7.2 Two-Coloring Graphs 219

7.8 Depth-First Search 221
7.9 Applications of Depth-First Search 224
7.9.1 Finding Cycles o o 224
7.9.2 Articulation Vertices 225

7.10 Depth-First Search on Directed Graphs 230
7.10.1 Topological Sorting 231
7.10.2 Strongly Connected Components 232

7.11 Exercises e 235
8 Weighted Graph Algorithms 243
8.1 Minimum Spanning Trees 244
8.1.1 Prim’s Algorithm 245
8.1.2 Kruskal’s Algorithm 248
8.1.3 The Union-Find Data Structure 250
8.1.4 Variations on Minimum Spanning Trees 253

8.2 War Story: Nothing but Nets 254
8.3 Shortest Paths o 257
8.3.1 Dijkstra’s Algorithm 258
8.3.2 All-Pairs Shortest Path 261
8.3.3 Transitive Closure 263

8.4 War Story: Dialing for Documents 264
8.5 Network Flows and Bipartite Matching 267
8.5.1 Bipartite Matching 0. 267
8.5.2 Computing Network Flows 268

8.6 Randomized Min-Cut 272
8.7 Design Graphs, Not Algorithms 274

8.8 Exercises 276

CONTENTS

9 Combinatorial Search

9.1 Backtracking o
9.2 Examples of Backtrackingo

9.2.1 Constructing All Subsets

9.2.2 Constructing All Permutations

9.2.3 Constructing All Paths in a Graph
9.3 Search Pruning
9.4 Sudoku
9.5 War Story: Covering Chessboards
9.6 Best-First Search o0
9.7 The A* Heuristic
9.8 Exercises

10 Dynamic Programming

10.1 Caching vs. Computation
10.1.1 Fibonacci Numbers by Recursion
10.1.2 Fibonacci Numbers by Caching
10.1.3 Fibonacci Numbers by Dynamic Programming
10.1.4 Binomial Coefficients

10.2 Approximate String Matching
10.2.1 Edit Distance by Recursion
10.2.2 Edit Distance by Dynamic Programming
10.2.3 Reconstructing the Path
10.2.4 Varieties of Edit Distance

10.3 Longest Increasing Subsequence

10.4 War Story: Text Compression for Bar Codes

10.5 Unordered Partition or Subset Sum

10.6 War Story: The Balance of Power

10.7 The Ordered Partition Problem

10.8 Parsing Context-Free Grammars

10.9 Limitations of Dynamic Programming: TSP
10.9.1 When is Dynamic Programming Correct?

11 NP-Completeness

11.1 Problems and Reductions
11.1.1 The Key Idea
11.1.2 Decision Problems

11.2 Reductions for Algorithms
11.2.1 Closest Pair
11.2.2 Longest Increasing Subsequence
11.2.3 Least Common Multiple
11.24 Convex Hull (*)

11.3 Elementary Hardness Reductions

xiii

281
281
284
284
286
287
289
290
295
298
300
303

307
308
308
309
311
312
314
315
317
318
321
324
326
329
331
333
337
339
340
341
342
345

Xiv

11.4

11.5

11.6
11.7
11.8
11.9

12 Dealing with Hard Problems

Approximation Algorithms

Approximating Vertex Cover
12.2.1 A Randomized Vertex Cover Heuristic
Euclidean TSP
12.3.1 The Christofides Heuristic
When Average is Good Enough
12.4.1 Maximum k-SAT
12.4.2 Maximum Acyclic Subgraph
Set Cover
Heuristic Search Methods
12.6.1 Random Sampling
12.6.2 Local Search
12.6.3 Simulated Annealing
12.6.4 Applications of Simulated Annealing
War Story: Only it is Not a Radio
War Story: Annealing Arrays
12.9 Genetic Algorithms and Other Heuristics
12.10Quantum Computing
12.10.1 Properties of “Quantum” Computers
12.10.2 Grover’s Algorithm for Database Search
12.10.3 The Faster “Fourier Transform”
12.10.4 Shor’s Algorithm for Integer Factorization
12.10.5 Prospects for Quantum Computing
12.11Exercises

12.1
12.2

12.3

12.4

12.5
12.6

12.7
12.8

13 How to Design Algorithms
13.1 Preparing for Tech Company Interviews

11.3.1 Hamiltonian Cycle
11.3.2 Independent Set and Vertex Cover

11.3.3 Clique

Satisfiability
11.4.1 3-Satisfiability
Creative Reductions from SAT
11.5.1 Vertex Cover
11.5.2 Integer Programming
The Art of Proving Hardness
War Story: Hard Against the Clock
War Story: And Then I Failed
Pvs. NP
11.9.1 Verification vs. Discovery
11.9.2 The Classes P and NP
11.9.3 Why Satisfiability is Hard
11.9.4 NP-hard vs. NP-complete?
11.10Exercises

CONTENTS

CONTENTS

II The Hitchhiker’s Guide to Algorithms
14 A Catalog of Algorithmic Problems

15 Data Structures

15.1 Dictionaries L
15.2 Priority Queues
15.3 Suffix Trees and Arrays
15.4 Graph Data Structures
15.5 Set Data Structures
15.6 Kd-Trees

16 Numerical Problems

16.1 Solving Linear Equations
16.2 Bandwidth Reduction
16.3 Matrix Multiplication
16.4 Determinants and Permanents
16.5 Constrained/Unconstrained Optimization
16.6 Linear Programming
16.7 Random Number Generation
16.8 Factoring and Primality Testing
16.9 Arbitrary-Precision Arithmetic
16.10Knapsack Problem
16.11Discrete Fourier Transform

17 Combinatorial Problems

17.1 Sortingo
17.2 Searching
17.3 Median and Selection
17.4 Generating Permutations
17.5 Generating Subsets
17.6 Generating Partitions
17.7 Generating Graphs L.
17.8 Calendrical Calculations
17.9 Job Scheduling L.
17.10Satisfiability oo

18 Graph Problems: Polynomial Time

18.1 Connected Components
18.2 Topological Sorting,
18.3 Minimum Spanning Tree
18.4 Shortest Path L.
18.5 Transitive Closure and Reduction
18.6 Matching
18.7 Eulerian Cycle/Chinese Postman
18.8 Edge and Vertex Connectivity

XV

435
437

439
440
445
448
452
456
460

465
467
470
472
475
478
482
486
490
493
497
501

xvi CONTENTS
18.9 Network Flow 571
18.10Drawing Graphs Nicely 574
18.11Drawing Treeso 578
18.12Planarity Detection and Embedding 581

19 Graph Problems: NP-Hard 585
19.1 Clique o o o 586
19.2 Independent Seto L 589
19.3 Vertex Cover 591
19.4 Traveling Salesman Problem 594
19.5 Hamiltonian Cycle 598
19.6 Graph Partition 601
19.7 Vertex Coloring 604
19.8 Edge Coloring 608
19.9 Graph Isomorphism 610
19.10Steiner Tree oL 614
19.11Feedback Edge/Vertex Set 618

20 Computational Geometry 621
20.1 Robust Geometric Primitives 622
20.2 Convex Hull 626
20.3 Triangulationo 630
20.4 Voronoi Diagrams 634
20.5 Nearest-Neighbor Search 637
20.6 Range Search 641
20.7 Point Location Lo o 644
20.8 Intersection Detection 648
20.9 Bin Packingo 652
20.10Medial-Axis Transform 655
20.11Polygon Partitioning oo 658
20.12Simplifying Polygons L oo 661
20.13Shape Similarity oo 664
20.14Motion Planning 667
20.15Maintaining Line Arrangements 671
20.16Minkowski Sumo 674

21 Set and String Problems 677
21.1 Set Cover 678
21.2 Set Packing 682
21.3 String Matching L o 685
21.4 Approximate String Matching 688
21.5 Text Compression 693
21.6 Cryptography 697
21.7 Finite State Machine Minimization 702
21.8 Longest Common Substring/Subsequence 706
21.9 Shortest Common Superstring 709

CONTENTS

22 Algorithmic Resources
22.1 Algorithm Libraries
22.1.1 LEDA
22.1.2 CGAL
22.1.3 Boost Graph Library . .
22.1.4 Netlib

22.1.5 Collected Algorithms of the ACM

22.1.6 GitHub and SourceForge
22.1.7 The Stanford GraphBase
22.1.8 Combinatorica
22.1.9 Programs from Books .
22.2 Data Sources
22.3 Online Bibliographic Resources
22.4 Professional Consulting Services

23 Bibliography

Index

xvii

713
713
713
714
714
714
715
715
715
716
716
17
718
718

719

769

	Preface
	To the Reader
	To the Instructor
	Acknowledgments
	Caveat

	Contents

